[Science Trends]Remarkable Emissions Of Nitrated Phenols Fro
[ Home ]
Photograph of coal combustion in a residential stove
Coal, one of the most important energy resources, is widely used around the world in power generation, industrial production, household cooking, heating, and so on. In China, 91 Tg coal was used in the residential sector for cooking and heating in 2016. Due to the lack of particle treatment apparatus, residential coal combustion releases large amounts of carbonaceous particles into the atmosphere, such as organic carbons and black carbons (Zhang et al., 2007).
Nitrated phenols, organic molecules that consist of at least one hydroxyl radical and one nitro functional group connected to an aromatic ring, are one of the major components of brown carbon. Nitrated phenols can strongly absorb UV and visible light and thus affect the radiation balance and further regional climates (Mohr et al., 2013). Besides, nitrated phenols do harm to humans and organisms (Fernandez et al., 1992; Harrison et al., 2005). Nitrated phenols in the atmosphere come from both the primary emissions of combustion processes and the secondary formation from aromatic precursors. Biomass burning has been recognized as the major emission source of nitrated phenols (Hoffmann et al., 2007), however, it remains unclear whether there are direct emissions from the combustion of various kinds of coals.
Considering the huge consumption of coal for residential use and the lack of dust removal devices, Dr. Xingfeng Wang and his Ph.D. student Chunying Lu and collaborators from Shandong University conducted laboratory experiments to investigate the emissions of ten nitrated phenols in fine particulate matters from combustions of ten kinds of coals including chunks of lignite, bituminite, and anthracite, as well as anthracite briquettes. As an important complement to the traditional view of major emission source of biomass burning, they found that coal combustion directly emitted a large amount of nitrated phenols and acted as another major emission source of these brown carbons.
Photographs of selected coals, the deployed stove with coal combustion, and the collected fine particulate matters on quartz filters.XIAMIANPINY
This laboratory study shows that the emission profiles of fine particulate nitrated phenols from coal combustion were similar to those from biomass burning. The emission factors of nitrated phenols for various coals were 0.2–10.1 mg kg-1. Compared to the emissions factors from biomass burning, the emission factors of nitrated phenols from coal combustion for lignites and bitu
minites were comparable or even a little higher. The estimated total amount of fine particulate nitrated phenols directly emitted from residential coal combustion in China in 2016 was 178
Coal, one of the most important energy resources, is widely used around the world in power generation, industrial production, household cooking, heating, and so on. In China, 91 Tg coal was used in the residential sector for cooking and heating in 2016. Due to the lack of particle treatment apparatus, residential coal combustion releases large amounts of carbonaceous particles into the atmosphere, such as organic carbons and black carbons (Zhang et al., 2007).
Nitrated phenols, organic molecules that consist of at least one hydroxyl radical and one nitro functional group connected to an aromatic ring, are one of the major components of brown carbon. Nitrated phenols can strongly absorb UV and visible light and thus affect the radiation balance and further regional climates (Mohr et al., 2013). Besides, nitrated phenols do harm to humans and organisms (Fernandez et al., 1992; Harrison et al., 2005). Nitrated phenols in the atmosphere come from both the primary emissions of combustion processes and the secondary formation from aromatic precursors. Biomass burning has been recognized as the major emission source of nitrated phenols (Hoffmann et al., 2007), however, it remains unclear whether there are direct emissions from the combustion of various kinds of coals.
Considering the huge consumption of coal for residential use and the lack of dust removal devices, Dr. Xingfeng Wang and his Ph.D. student Chunying Lu and collaborators from Shandong University conducted laboratory experiments to investigate the emissions of ten nitrated phenols in fine particulate matters from combustions of ten kinds of coals including chunks of lignite, bituminite, and anthracite, as well as anthracite briquettes. As an important complement to the traditional view of major emission source of biomass burning, they found that coal combustion directly emitted a large amount of nitrated phenols and acted as another major emission source of these brown carbons.
Photographs of selected coals, the deployed stove with coal combustion, and the collected fine particulate matters on quartz filters.XIAMIANPINY
This laboratory study shows that the emission profiles of fine particulate nitrated phenols from coal combustion were similar to those from biomass burning. The emission factors of nitrated phenols for various coals were 0.2–10.1 mg kg-1. Compared to the emissions factors from biomass burning, the emission factors of nitrated phenols from coal combustion for lignites and bitu
minites were comparable or even a little higher. The estimated total amount of fine particulate nitrated phenols directly emitted from residential coal combustion in China in 2016 was 178
Academician Zhang Yun Elected as Honorary President of ASC
The Findings of Professor Wang
Dr. Yang Chi from SDU Won the RHIC/AGS Merit Award
German and Canadian Ambassadors to China Visit SDU
The Delegation of Irkutsk National Research Technical Univer